
NCCS Brown Bag
Series

Tips for Monitoring Memory Usage
in PBS jobs on Discover

Chongxun (Doris) Pan
doris.pan@nasa.gov

October 16, 2012

After the talk, you will understand --

•  What’s memory swapping, really?
•  Why does my application cause high memory

swapping?
•  What could happen when my PBS job causes

excessive memory swapping?
•  How to determine the memory footprint for your

application and decide the appropriate node count
•  Tips and Best practices

3

What is memory swapping, really?

•  There is never enough Random Access Memory
(RAM)

•  Virtual Memory (VM) available = physical RAM +
swap space (preconfigured space on the slower hard
disk)

•  Linux divides VM and physical RAM into chunks of
memory, called pages

•  Swapping occurs when a page of memory is copied to
swap space to free up the page of memory in RAM

4

What is memory swapping, really?

•  Swapping is necessary because
1.  More memory can be used than is physically available.

The kernel is able to swap out less used pages from RAM
and free memory for other immediate uses.

2.  Lots of pages used by an application during initialization
may not be used until much later.

•  Swapping has drawbacks
!  Disks are very slow compared to memory
!  Excessive swapping, or thrashing, occurs where a page is

swapped out and then very soon swapped in and then
swapped out again, and so on. This is indicative of
insufficient RAM for the workload .

5

Why does my application cause high
“memory swapping”?

•  Because the application requires more memory than
is physically available on either some or all of the
nodes it has been running on

•  Things to check:
!  Do I use the correct MPI library?
!  Do I set “mpiprocs” or “-perhost” correctly?
!  How much memory does each MPI processor use?
!  Do some MPI processes require considerably more memory than

the rest?

6

Discover nodes

7

Node Memory
per node

Memory
per core

Swap Space
 per node

Environment

Nehalem 24 GB 3 GB 8 GB PBS11
Westmere 24 GB 2 GB 8 GB PBS11

SandyBridge 32 GB 2 GB 8 GB PBS11
Warp Westmere 48 GB 4 GB 8 GB PBS11
Dali (01-08) 256 GB 16 GB -- No PBS
Dali-gpu (09-20) 192 GB 16 GB -- No PBS

A PBS job will be killed when it uses >=60% of
the swap space on one or more nodes.

What could happen when my PBS job
swaps excessively?

•  Your job is killed when it uses 60% of total 8G swap
space on one or more compute nodes

•  Thrashing is extremely detrimental to system
performance. The nodes may become unresponsive
and have to be rebooted

•  Sometimes the thrashing happens so fast that it
outpaces the system’s defensive mechanism and locks
up the global file system, which leads to an entire
GPFS hang on Discover and Dali

•  You will get a few emails from NCCS and receive a
call from me…

8

So, how to prevent that?

1.  The easier way: Run the job interactively and monitor
memory usage while it is running

2.  Use tools or libraries to obtain memory usage
statistics across MPI processors

!  A memory monitoring tool developed by Tyler Simon
http://www.nccs.nasa.gov/primer/computing.html#memoryreq
https://modelingguru.nasa.gov/docs/DOC-1727
!  TotalView MemoryScape
http://www.nccs.nasa.gov/images/Totalview-Part2-Doris.pdf

9

Interactive-batch PBS Jobs

•  An interactive-batch job is a regular batch job, but
allows you to get on to the compute nodes. Very
useful for debugging and computational steering.

10

$ xsub -I –V -l select=4:ncpus=12:proc=west,walltime=2:00:00 –q general
Establishing X forwarding and submitting batch job...
qsub: waiting for job 845848.pbsa1 to start
qsub: job 845848.pbsa1 ready

borge107:$ xterm &
(Now you are on the headnode. And you can open another terminal!)
borge107:$ cat $PBS_NODEFILE
borge107.prv.cube
borge108.prv.cube
borge118.prv.cube
borge119.prv.cube
borge107:$ mpirun –perhost 6 –np 24 ./GEOSgcm.x

Interactive-batch PBS Jobs

•  While the “mpirun” executes, on the other terminal
you can issue the "top" command or look at the file
/proc/meminfo periodically.

11

borge107:$ top
(Type “q” to quit the top window)
borge107:$ ssh –XY borge119
(You can also ssh to any other nodes listed in your PBS_NODEFILE and
check the status there. Xforwarding is allowed.)
borge119:$ xterm &
borge119:$ top –u cpan2
borge119:$ top –b –n 1 | grep –i GEOSgcm.x
borge119:$ /usr/local/other/Htop/1.0/bin/htop –u cpan2
(Try htop. It is an updated top with more features)
borge119:$ cat /proc/meminfo

The “top” command

VIRT: Total amount of virtual memory used by the process,
including code, data, shared libraries, pages that swapped out

RES: Resident size (i.e., non-swapped physical memory a process
has used)

12

top - 10:07:02 up 4 days, 23:26, 1 user, load average: 10.66, 4.31, 3.37
Tasks: 266 total, 13 running, 252 sleeping, 0 stopped, 1 zombie
Cpu(s): 88.8%us, 10.4%sy, 0.0%ni, 0.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 24022M total, 5748M used, 18274M free, 104M buffers
Swap: 8001M total, 97M used, 7903M free, 476M cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29558 cpan2 20 0 4097m 409m 20m R 100 1.7 2:11.80 GEOSgcm.x
29560 cpan2 20 0 3857m 168m 19m R 100 0.7 2:12.03 GEOSgcm.x
29563 cpan2 20 0 4952m 1.2g 21m R 100 5.3 2:09.75 GEOSgcm.x
29565 cpan2 20 0 3856m 166m 18m R 99 0.7 2:11.46 GEOSgcm.x
 1 root 20 0 10392 92 60 S 0 0.0 0:04.62 init
 2 root 20 0 0 0 0 S 0 0.0 0:00.00 kthreadd

/proc/meminfo

• /proc/meminfo shows top level
memory information.
• /proc/<PID>/status shows
information for a given process ID
• The information is dynamic,
changing constantly.
• cat /proc/29558/status | egrep
‘VmSize|VmRSS’

13

MemTotal: 24599140 kB
MemFree: 18709396 kB
Buffers: 106632 kB
Cached: 434020 kB
SwapCached: 58180 kB
…
SwapTotal: 8193140 kB
SwapFree: 8093128 kB
…
Shmem: 25564 kB
…
VmallocTotal: 34359738367 kB
VmallocUsed: 466688 kB
VmallocChunk: 34344742748 kB
…

From the top output or meminfo, once you see that MemFree is down to 1GB
and lower, and SwapFree is down to 4GB and still steadily creeping down, kill
your mpirun job before it is too late!

The correct way to kill your mpirun job is:
mpirun –perhost 1 –np <#_of_nodes> killall –v <command_name>

Tips and Best Practices

1.  If running all cores per node causes memory
problems, you should request more nodes and run
fewer cores per node.

14

#PBS –l select=6:ncpus=12:mpiprocs=6
…
if using Intel MPI
mpirun –perhost 6 –np 36 ./foo.exe

if using MVAPICH2
mpirun –ppn 6 –np 36 ./foo.exe

If using OpenMPI
mpirun –npernode 6 –np 36 ./foo.exe

select=<# of nodes>
mpiprocs=<# of MPI tasks per
node you want to run your job with
ncpus=<minimum # of total cores
per node for your requested
nodes>

e.g., select=6:ncpus=12 may
either get you 6 Westmere nodes
or 6 SandyBridge nodes,
depending on which nodes
become available first

Tips and Best Practices

2.  Note! One Intel MPI library, mpi/impi-4.0.3.008,
has a known problem of ignoring the “mpiprocs”
setting. Any other Intel MPI lib is fine.

So, it is a good practice to always specify
“-perhost” (or –ppn, -npernode) for mpirun when
you intend to use only part of the total cores per
node

15

Tips and Best Practices

3.  Remember: If neither mpiprocs nor –perhost/-ppn/-
npernode is specified, the default value is the total
available cores on the nodes.

16

#PBS –l select=6:ncpus=8
…
mpirun –np 48 ./foo.exe

You may get 6 Nehalem nodes. In this
case, the job executes on 6 nodes
running 8 processors on each node.

You may get 6 Westmere nodes. In this
case, the job executes on 4 nodes
running 12 processors on each node. The
rest of 2 Westmere nodes are left idle!!

You may get 6 SandyBridge
nodes. In this case, the job
executes on 3 nodes running
16 processors on each node.
The rest of 3 nodes are left
idle!!

Tips and Best Practices

4.  Adding “proc=”may be necessary if you intend to
run on a certain type of nodes.

17

#PBS –l select=6:ncpus=8:mpiprocs=8:proc=neha
…
mpirun –np 48 ./foo.exe

#PBS –l select=4:ncpus=12:mpiprocs=12:proc=west
…
mpirun –np 48 ./foo.exe

#PBS –l select=3:ncpus=16:mpiprocs=16
…
mpirun –np 48 ./foo.exe

proc=sand is unnecessary in
this case because currently
the SandyBridge nodes are
the only choice satisfying
ncpus=16

Tips and Best Practices

5.  Some applications may benefit from uneven
placement of MPI processors per node because some
processors need access to larger memory than the
rest.

Processors: (p0,p1)(p2,p3,…p13)(p14,p15,…p25)(p26,p27,…p35)
Nodes: node1 node2 node3 node4

18

#PBS –l select=1:ncpus=12:mpiprocs=2+3:ncpus=12:mpiprocs=12
…
if using Intel MPI, do NOT use impi-4.0.3.008
mpirun –np 36 ./foo.exe

Tips and Best Practices

6.  During the interactive session, make sure to clean up
hanging processes before issuing the next mpirun
command!

19

$ xsub -I -l select=4:ncpus=12:mpiprocs=12:proc=west,walltime=2:00:00 –q
general
…qsub: job xxxxxx.pbsa1 ready

borgd009:$ …
borgd009:$ mpirun –np 48 ./GEOSgcm.x
(Ctl-c to terminate the job may leave many dangling processes both on the head node
and other compute nodes!!)
borgd009:$ mpirun –perhost 1 –np 4 killall –v GEOSgcm.x
(This will kill all the processes running GEOSgcm.x on all 4 nodes)
borgd009:$ mpirun –np 48 ./GEOSgcm.x
(Now you can issue another mpirun command as all 4 nodes are cleared of any leftover
processes from the previous run. Use “top” to verify if you want)

Tips and Best Practices

7.  Take advantage of the large memory on the Dali
nodes. You are not allowed to run multi-processor
MPI jobs on Dali, but you can:

!  Monitor memory usage for a small MPI job while running
it with a single processor;

!  Monitor memory usage for a single pre- or post-
processing job. Use the information later to decide how
many instances of similar, independent jobs can execute
concurrently on a Discover computer node using either
PoDs or other scripts.

20

Tips and Best Practices

8.  If a new job of yours has repeatedly run nodes out of
memory no matter how you tweak your script, don’t
hesitate to contact support@nccs.nasa.gov.

 We can help you.

21

Tips and Best Practices

9.  Try NOT to attempt a new memory-intensive
application that you know may run nodes out of
memory during weekends or nighttime, when the
admin team cannot respond quickly to perform
damage control on the system

22

